Fairness in Large Language Models: A Taxonomic Survey

Author:

Chu Zhibo1,Wang Zichong1,Zhang Wenbin1

Affiliation:

1. Florida International University, Miami, FL, USA

Abstract

Large Language Models (LLMs) have demonstrated remarkable success across various domains. However, despite their promising performance in numerous real-world applications, most of these algorithms lack fairness considerations. Consequently, they may lead to discriminatory outcomes against certain communities, particularly marginalized populations, prompting extensive study in fair LLMs. On the other hand, fairness in LLMs, in contrast to fairness in traditional machine learning, entails exclusive backgrounds, taxonomies, and fulfillment techniques. To this end, this survey presents a comprehensive overview of recent advances in the existing literature concerning fair LLMs. Specifically, a brief introduction to LLMs is provided, followed by an analysis of factors contributing to bias in LLMs. Additionally, the concept of fairness in LLMs is discussed categorically, summarizing metrics for evaluating bias in LLMs and existing algorithms for promoting fairness. Furthermore, resources for evaluating bias in LLMs, including toolkits and datasets, are summarized. Finally, existing research challenges and open questions are discussed.

Publisher

Association for Computing Machinery (ACM)

Reference175 articles.

1. Persistent Anti-Muslim Bias in Large Language Models

2. Josh Achiam et al. "Gpt-4 technical report". In: arXiv preprint arXiv:2303.08774 (2023).

3. Afra Feyza Aky¨urek et al. "DUnE: Dataset for unified editing". In: arXiv preprint arXiv:2311.16087 (2023).

4. Chantal Amrhein et al. "Exploiting biased models to de-bias text: A gender-fair rewriting model". In: arXiv preprint arXiv:2305.11140 (2023).

5. Haozhe An et al. "Sodapop: open-ended discovery of social biases in social commonsense reasoning models". In: arXiv preprint arXiv:2210.07269 (2022).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3