Known and unknown event detection in OTDR traces by deep learning networks

Author:

Rizzo Antonino MariaORCID,Magri Luca,Rutigliano Davide,Invernizzi Pietro,Sozio Enrico,Alippi Cesare,Binetti Stefano,Boracchi Giacomo

Abstract

AbstractOptical fiber links are customarily monitored by Optical Time Domain Reflectometer (OTDR), an optoelectronic instrument that measures the scattered or reflected light along the fiber and returns a signal, namely the OTDR trace. OTDR traces are typically analyzed by experts in laboratories or by hand-crafted algorithms running in embedded systems to localize critical events occurring along the fiber. In this work, we address the problem of automatically detecting optical events in OTDR traces through a deep learning model that can be deployed in embedded systems. In particular, we take inspiration from Faster R-CNN and present the first 1D object-detection neural network for OTDR traces. Thanks to an ad-hoc preprocessing pipeline for OTDR traces, we can also identify unknown events, namely events that are not represented in training data but that might indicate rare and unforeseen situations that need to be reported. The resulting network brings several advantages with respect to existing solutions, as these typically classify fixed-size windows of OTDR traces, thus are less accurate in the localization. Moreover, existing solutions do not report events that cannot be safely associated to any label in the training set. Our experiments, performed on real OTDR traces, show very promising performance, and can be directly executed on embedded OTDR devices.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3