Event recognition method based on feature synthesizing for a zero-shot intelligent distributed optical fiber sensor

Author:

Shi YiORCID,Liu Hanfang,Zhang Wentao,Cheng Zhongdi,Chen Jiewei,Sun Qian1

Affiliation:

1. Tianjin University of Commerce

Abstract

Phase-sensitive optical time domain reflectometer (Φ-OTDR) is an emergent distributed optical sensing system with the advantages of high localization accuracy and high sensitivity. It has been widely used for intrusion identification, pipeline monitoring, under-ground tunnel monitoring, etc. Deep learning-based classification methods work well for Φ-OTDR event recognition tasks with sufficient samples. However, the lack of training data samples is sometimes a serious problem for these data-driven algorithms. This paper proposes a novel feature synthesizing approach to solve this problem. A mixed class approach and a reinforcement learning-based guided training method are proposed to realize high-quality feature synthesis. Experiment results in the task of eight event classifications, including one unknown class, show that the proposed method can achieve an average classification accuracy of 42% for the unknown class and obtain its event type, meanwhile achieving a 74% average overall classification accuracy. This is 29% and 7% higher, respectively, than those of the ordinary instance synthesizing method. Moreover, this is the first time that the Φ-OTDR system can recognize a specific event and tell its event type without collecting its data sample in advance.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Research Project of Tianjin Education Commission

Publisher

Optica Publishing Group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3