Abstract
AbstractOffline reinforcement learning (RL) has emerged as a promising paradigm for real-world applications since it aims to train policies directly from datasets of past interactions with the environment. The past few years, algorithms have been introduced to learn from high-dimensional observational states in offline settings. The general idea of these methods is to encode the environment into a latent space and train policies on top of this smaller representation. In this paper, we extend this general method to stochastic environments (i.e., where the reward function is stochastic) and consider a risk measure instead of the classical expected return. First, we show that, under some assumptions, it is equivalent to minimizing a risk measure in the latent space and in the natural space. Based on this result, we present Latent Offline Distributional Actor-Critic (LODAC), an algorithm which is able to train policies in high-dimensional stochastic and offline settings to minimize a given risk measure. Empirically, we show that using LODAC to minimize Conditional Value-at-Risk (CVaR) outperforms previous methods in terms of CVaR and return on stochastic environments.
Funder
Interreg France-Suisse
University of Applied Sciences and Arts Western Switzerland
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference75 articles.
1. Hussein A, Gaber MM, Elyan E, Jayne C (2017) Imitation learning: a survey of learning methods. ACM Comput Surv (CSUR) 50(2):1–35. https://doi.org/10.1145/3054912
2. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489. https://doi.org/10.1038/nature16961
3. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D, Graepel T et al (2018) A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419):1140–1144. https://doi.org/10.1126/science.aar6404
4. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International conference on machine learning, pp 1861–1870. PMLR
5. Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea JA, Solowjow E, Levine S (2019) Residual reinforcement learning for robot control. In: 2019 international conference on robotics and automation (ICRA), pp 6023–6029. https://doi.org/10.1109/ICRA.2019.8794127. IEEE
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献