M-GCN: Brain-inspired memory graph convolutional network for multi-label image recognition
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-06803-z.pdf
Reference38 articles.
1. Chen T, Wang Z, Li G, Lin L (2018) Recurrent attentional reinforcement learning for multi-label image recognition. In: Proceedings of the AAAI conference on artificial intelligence, 32
2. Chen T, Xu M, Hui X, Wu H, Lin L (2019) Learning semantic-specific graph representation for multi-label image recognition. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 522–531
3. Chen ZM, Wei XS, Wang P, Guo Y (2019) Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 5177–5186
4. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, Ieee, pp 248–255
5. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–62
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Label Image Classification Model Based on Multiscale Fusion and Adaptive Label Correlation;Journal of Shanghai Jiaotong University (Science);2024-01-02
2. Data Privacy Protection Model Based on Graph Convolutional Neural Network;Mobile Networks and Applications;2023-08-04
3. Joint learning networks of low-level and high-level features for multi-label ship recognition in complex backgrounds;Applied Intelligence;2023-07-23
4. Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence;International Journal of Intelligent Systems;2023-02-28
5. Multi-label Image Transient Background Information Recognition Based on Graph Convolutional Network;2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2023-02-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3