Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence

Author:

Bhatti Uzair Aslam12ORCID,Tang Hao1ORCID,Wu Guilu1,Marjan Shah3,Hussain Aamir4ORCID

Affiliation:

1. School of Information and Communication Engineering, Hainan University, Haikou 570100, China

2. State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China

3. Department of Software Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, Pakistan

4. Department of Computer Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan

Abstract

Convolutional neural networks (CNNs) have received widespread attention due to their powerful modeling capabilities and have been successfully applied in natural language processing, image recognition, and other fields. On the other hand, traditional CNN can only deal with Euclidean spatial data. In contrast, many real-life scenarios, such as transportation networks, social networks, reference networks, and so on, exist in graph data. The creation of graph convolution operators and graph pooling is at the heart of migrating CNN to graph data analysis and processing. With the advancement of the Internet and technology, graph convolution network (GCN), as an innovative technology in artificial intelligence (AI), has received more and more attention. GCN has been widely used in different fields such as image processing, intelligent recommender system, knowledge-based graph, and other areas due to their excellent characteristics in processing non-European spatial data. At the same time, communication networks have also embraced AI technology in recent years, and AI serves as the brain of the future network and realizes the comprehensive intelligence of the future grid. Many complex communication network problems can be abstracted as graph-based optimization problems and solved by GCN, thus overcoming the limitations of traditional methods. This survey briefly describes the definition of graph-based machine learning, introduces different types of graph networks, summarizes the application of GCN in various research fields, analyzes the research status, and gives the future research direction.

Funder

Hainan University

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3