Study and comparison of different Machine Learning-based approaches to solve the inverse problem in Electrical Impedance Tomographies

Author:

Aller Martín,Mera DavidORCID,Cotos José Manuel.,Villaroya Sebastián

Abstract

AbstractElectrical Impedance Tomography (EIT) is a non-invasive technique used to obtain the electrical internal conductivity distribution from the interior of bodies. This is a promising method from the manufacturing viewpoint, since it could be used to estimate different physical inner body properties during the production of goods. Nevertheless, this technique requires dealing with an inverse problem that makes its usage in real-time processes challenging. Recently, Machine Learning techniques have been proposed to solve the inverse problem accurately. However, the majority of prior research is focused on qualitative results, and they typically lack a systematic methodology to determine the optimal hyperparameters appropriately. This work presents a systematic comparison of six popular Machine Learning algorithms: Artificial Neural Network, Random Forest, K-Nearest Neighbors, Elastic Net, Ada Boost, and Gradient Boosting. Particularly, the last two algorithms were based on decision tree learners. Furthermore, we studied the relationship between model performance and different EIT configurations. Specifically, we analyzed whether the measurement pattern and the number of used electrodes could increase the model performance. Experiments revealed that tree-based models present high performance, even better than Neural Networks, the most widely-used Machine Learning model to deal with EIT. Experiments also showed a model performance improvement when the EIT configuration was optimized. Most favorable metrics were attained using the tree-based Gradient Boosting model with a combination of both adjacent and mono measurement patterns as well as with 32 electrodes deployed during the tomographic process. With this particular setting, we achieved an accuracy of 99.14% detecting internal artifacts and a Root Mean Square Error of 4.75 predicting internal conductivity distributions.

Funder

Consellería de Educación, Universidade e Formación profesional

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3