Prediction of the critical temperature of a superconductor by using the WOA/MARS, Ridge, Lasso and Elastic-net machine learning techniques

Author:

García-Nieto Paulino JoséORCID,García-Gonzalo Esperanza,Paredes-Sánchez José Pablo

Abstract

AbstractThis study builds a predictive model capable of estimating the critical temperature of a superconductor from experimentally determined physico-chemical properties of the material (input variables): features extracted from the thermal conductivity, atomic radius, valence, electron affinity and atomic mass. This original model is built using a novel hybrid algorithm relied on the multivariate adaptive regression splines (MARS) technique in combination with a nature-inspired meta-heuristic optimization algorithm termed the whale optimization algorithm (WOA) that mimics the social behavior of humpback whales. Additionally, the Ridge, Lasso and Elastic-net regression models were fitted to the same experimental data for comparison purposes. The results of the current investigation indicate that the critical temperature of a superconductor can be successfully predicted using this proposed hybrid WOA/MARS-based model. Furthermore, the results obtained with the Ridge, Lasso and Elastic-net regression models are clearly worse than those obtained with the WOA/MARS-based model.

Funder

Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología

Ministerio de Ciencia, Innovación y Universidades

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference55 articles.

1. Ashcroft NW (2003) Solid state physics. Thomson Press Ltd, Delhi

2. Tinkham M (2004) Introduction to superconductivity. Dover Publications, New York

3. Kittel C (2005) Introduction to solid state physics. Wiley, New York

4. Annett JF (2004) Superconductivity, superfluids, and condensates. Oxford University Press, Oxford

5. Poole CP Jr, Prozorov R, Farach HA, Creswick RJ (2014) Superconductivity. Elsevier, Amsterdam

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3