PDS-MCNet: a hybrid framework using MobileNetV2 with SiLU6 activation function and capsule networks for disease severity estimation in plants
Author:
Funder
DST, MST, Govt. of India.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-023-08693-9.pdf
Reference63 articles.
1. Schneider UA, Havlík P, Schmid E, Valin H, Mosnier A, Obersteiner M, Fritz S (2011) Impacts of population growth, economic development, and technical change on global food production and consumption. Agric Syst 104(2):204–215
2. Ahmad A, Saraswat D, & El Gamal A (2022) A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agric Technol 100083
3. Verma S, Chug A, & Singh AP (2020) Recent advancements in image-based prediction models for diagnosis of plant diseases. In: Proceedings of 3rd international conference on computer vision and image processing (pp. 365–377). Springer, Singapore
4. Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90
5. Singh A, Ganapathysubramanian B, Singh AK, Sarkar S (2016) Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci 21(2):110–124
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PDSE-Lite: lightweight framework for plant disease severity estimation based on Convolutional Autoencoder and Few-Shot Learning;Frontiers in Plant Science;2024-01-08
2. TomSevNet: a hybrid CNN model for accurate tomato disease identification with severity level assessment;Neural Computing and Applications;2023-12-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3