Contextual word embeddings for tabular data search and integration

Author:

Pilaluisa José,Tomás DavidORCID,Navarro-Colorado Borja,Mazón Jose-Norberto

Abstract

AbstractThis paper presents a new approach to retrieve and further integrate tabular datasets (collections of rows and columns) using union and join operations. In this work, both processes were carried out using a similarity measure based on contextual word embeddings, which allows finding semantically similar tables and overcome the recall problem of lexical approaches based on string similarity. This work is the first attempt to use contextual word embeddings in the whole pipeline of table search and integration, including for the first time their use in the join operation. A comprehensive analysis of their performance was carried out on both retrieving and integrating tabular datasets, comparing them with context-free models. Column headings and cell values were used as contextual information and their impact on each task was evaluated. The results revealed that contextual models significantly outperform context-free models and a traditional weighting schema in ad hoc table retrieval. In the data integration task, contextual models also improved the results on union operation compared to context-free approaches.

Funder

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana

Spanish Government

Universidad de Alicante

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3