Leveraging Large Language Models for Sensor Data Retrieval

Author:

Berenguer Alberto1ORCID,Morejón Adriana1ORCID,Tomás David1ORCID,Mazón Jose-Norberto1ORCID

Affiliation:

1. Department of Software and Computing Systems, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain

Abstract

The growing significance of sensor data in the development of information technology services finds obstacles due to disparate data presentations and non-adherence to FAIR principles. This paper introduces a novel approach for sensor data gathering and retrieval. The proposal leverages large language models to convert sensor data into FAIR-compliant formats and to provide word embedding representations of tabular data for subsequent exploration, enabling semantic comparison. The proposed system comprises two primary components. The first focuses on gathering data from sensors and converting it into a reusable structured format, while the second component aims to identify the most relevant sensor data to augment a given user-provided dataset. The evaluation of the proposed approach involved comparing the performance of various large language models in generating representative word embeddings for each table to retrieve related sensor data. The results show promising performance in terms of precision and MRR (0.90 and 0.94 for the best-performing model, respectively), indicating the system’s ability to retrieve pertinent sensor data that fulfil user requirements.

Funder

Ministerio de Ciencia e Innovación

European Comission

Generalitat Valenciana

Publisher

MDPI AG

Reference63 articles.

1. McCreadie, R., Albakour, D., Manotumruksa, J., Macdonald, C., and Ounis, I. (2022). Building Blocks for IoT Analytics Internet-of-Things Analytics, River Publishers.

2. Discovery of multimodal sensor data through webpage exploration;Liu;IEEE Internet Things J.,2019

3. The FAIR Guiding Principles for scientific data management and stewardship;Wilkinson;Sci. Data,2016

4. FAIR sensor services-Towards sustainable sensor data management;Bodenbenner;Meas. Sens.,2021

5. Searching for the IoT resources: Fundamentals, requirements, comprehensive review, and future directions;Pattar;IEEE Commun. Surv. Tutor.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3