A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/article/10.1007/s00521-016-2666-0/fulltext.html
Reference56 articles.
1. Salazar F, Morán R, Toledo M, Oñate E (2015) Data-based models for the prediction of dam behaviour: a review and some methodological considerations. Arch Comput Methods Eng. doi: 10.1007/s11831-015-9157-9
2. Salazar F, Toledo MA, Oñate E, Morán R (2015) An empirical comparison of machine learning techniques for dam behaviour modelling. Struct Saf 56:9–17. doi: 10.1016/j.strusafe.2015.05.001
3. De Sortis A, Paoliani P (2007) Statistical analysis and structural identification in concrete dam monitoring. Eng Struct 29(1):110–120
4. Mata J (2011) Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Eng Struct 33(3):903–910. doi: 10.1016/j.engstruct.2010.12.011
5. Bayrak T (2007) Modelling the relationship between water level and vertical displacements on the Yamula Dam, Turkey. Nat Hazards Earth Syst Sci 7(2):289–297
Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on the mechanical behavior law of local damage of insulation board during the operation period of high arch dams;Structures;2024-10
2. Effect of environmental factors on modal identification of a hydroelectric dam’s hollow-gravity concrete block;Journal of Civil Structural Health Monitoring;2024-08-29
3. Tiny-Machine-Learning-Based Supply Canal Surface Condition Monitoring;Sensors;2024-06-25
4. Settlement Prediction for Concrete Face Rockfill Dams Considering Major Factor Mining Based on the HHO-VMD-LSTM-SVR Model;Water;2024-06-08
5. Theoretical Framework for Modeling Impact of Natural Disaster and Relief Measures;Economics of Natural Disasters;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3