Effect of environmental factors on modal identification of a hydroelectric dam’s hollow-gravity concrete block

Author:

Ardila-Ardila Yeny V.,Gómez-Araújo Iván D.,Villalba-Morales Jesús D.ORCID,Aracayo Luis A.

Abstract

AbstractDams are a type of civil infrastructure that can directly impact people’s well-being, as their function is energy production, flood control, or water supply. Therefore, it is worth generating strategies to assess its current condition, since structural changes may occur during its useful life. One highly effective approach for evaluating the structural integrity of dams involves monitoring alterations in modal parameters. This method enables the identification of abnormal changes that may arise from structural degradation. Numerous studies have revealed the strong influence of environmental factors on modal parameters, resulting in variations unrelated to structural damage. This paper investigates the effects of environmental factors such as upstream water level and air temperature on the temporal evolution of the identified modal parameters of a hydroelectric dam’s hollow-gravity concrete block. Modal identification is performed through an automatic procedure of estimating modal parameters to 30-min acceleration time series over 3 years of operation. Correlation analysis reveals a distinct relationship between the identified modal parameters and environmental factors. Changes in air temperature exhibit a direct proportional impact on natural frequencies, while fluctuations of the upstream level have an inverse effect. Furthermore, a time lag was observed in the natural frequencies concerning air temperature. Multiple linear regressions were fitted to mitigate the induced effects, incorporating as predictors the upstream water level and the averages of air temperature segments measured prior to the predicted frequency. A reduction in variability of more than 50% was achieved in an out-of-sample 8-month period for the modes linked to the natural frequencies most influenced by environmental factors.

Funder

Fundação Parque Tecnológico Itaipu

Universidade Federal da Integracao Latinoamericana

Pontifical Xavierian University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3