The influence of torsion on acceleration demands in low-rise RC buildings

Author:

Ruggieri SergioORCID,Vukobratović Vladimir

Abstract

AbstractThis paper presents a study of acceleration demands in low-rise reinforced concrete (RC) buildings with torsion, evaluated by quantifying peak floor accelerations (PFAs) and floor response (acceleration) spectra (FRS). The study was performed with the aim to provide simple empirical formulas to quantify the amplification effects due to torsion, which can occur in most of the existing and new RC buildings. With this goal in mind, a set of eight archetype buildings was selected, characterized by an increasing floor eccentricity obtained by moving the centre of rigidity (CR) away from the centre of mass (CM). Numerical models of the proposed set of archetype RC buildings were considered in both linear elastic and nonlinear configurations. For the latter, the properties of models were widely varied, by systematically modifying parameters of plastic hinges, in order to obtain a sample of 1000 models. Non-structural components (NSCs) were considered linear elastic in all cases. To investigate acceleration demands, a set of forty Eurocode 8 spectrum-compatible ground motion records were used as input. For linear elastic building models, it was observed that the change of demands depends on the position of the NSC (in-plan and in-height), and on the distance between CR and CM. On the other hand, for nonlinear models, additional parameters must be considered, such as the building ductility (μ) and yielding force (Vy). New regression models were proposed for quantifying the observed differences in PFAs and FRS when torsion occurs. The efficiency of the proposed models was assessed by testing the new formulas on an existing case study building, as well as on the well-known SPEAR building.

Funder

Politecnico di Bari

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3