Comparative assessment of finite element macro-modelling approaches for seismic analysis of non-engineered masonry constructions

Author:

Ravichandran Nagavinothini,Losanno Daniele,Parisi FulvioORCID

Abstract

AbstractAll around the world, non-engineered masonry constructions (NECs) typically have high vulnerability to seismic ground motion, resulting in heavy damage and severe casualties after earthquakes. Even though a number of computational strategies have been developed for seismic analysis of unreinforced masonry structures, a few studies have focussed on NECs located in developing countries. In this paper, different modelling options for finite element analysis of non-engineered masonry buildings are investigated. The goal of the study was to identify the modelling option with the best trade-off between computational burden and accuracy of results, in view of seismic risk assessment of NECs at regional scale. Based on the experimental behaviour of a single-storey structure representative of Indian non-engineered masonry buildings, the output of seismic response analysis of refined 3D models in ANSYS was compared to that of a simplified model based on 2D, nonlinear, layered shell elements in SAP2000. The numerical-experimental comparison was carried out under incremental static lateral loading, whereas nonlinear time history analysis was performed to investigate the dynamic performance of the case-study structure. Analysis results show that the simplified model can be a computationally efficient modelling option for both nonlinear static and dynamic analyses, particularly in case of force-based approaches for design and assessment of base isolation systems aimed at the large-scale seismic vulnerability mitigation of NECs.

Funder

Compagnia di San Paolo

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference93 articles.

1. Adhikari RK, D’Ayala D (2020) 2015 Nepal earthquake: seismic performance and post-earthquake reconstruction of stone in mud mortar masonry buildings. Bull Earthq Eng 18(8):3863–3896

2. Akhaveissy AH, Milani G (2013) Pushover analysis of large scale unreinforced masonry structures by means of a fully 2D non-linear model. Constr Build Mater 41:276–295

3. ANSYS (2015) Mechanical APDL material reference. ANSYS Inc

4. APDL, A. M. 16.2 [Computer software] (2015) ANSYS, Canonsburg, PA

5. Arya AS (2000) Non-engineered construction in developing countries-an approach toward earthquake risk prediction. Bull N Z Soc Earthq Eng 33(3):187–208

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3