A non-ergodic spectral acceleration ground motion model for California developed with random vibration theory

Author:

Lavrentiadis GrigoriosORCID,Abrahamson Norman A.

Abstract

AbstractA new approach for creating a non-ergodic pseudo-spectral acceleration (PSA) ground-motion model (GMM) is presented, which accounts for the magnitude dependence of the non-ergodic effects. In this approach, the average PSA scaling is controlled by an ergodic PSA GMM, and the non-ergodic effects are captured with non-ergodic PSA factors, which are the adjustment that needs to be applied to an ergodic PSA GMM to incorporate the non-ergodic effects. The non-ergodic PSA factors are based on the effective amplitude spectrum (EAS) non-ergodic effects and are converted to PSA through Random Vibration Theory (RVT). The advantage of this approach is that it better captures the non-ergodic source, path, and site effects through small-magnitude earthquakes. Due to the linear properties of the Fourier Transform, the EAS non-ergodic effects of the small events can be applied directly to the large magnitude events. This is not the case for PSA, as response spectra are controlled by a range of frequencies, making PSA non-ergodic effects dependent on the spectral shape, which in turn is magnitude-dependent. Two PSA non-ergodic GMMs are derived using the ASK14 (Abrahamson et al. in Earthq Spectra 30:1025–1055, 2014) and CY14 (Chiou and Youngs in Earthq Spectra 30:1117–1153, 2014) GMMs as backbone models, respectively. The non-ergodic EAS effects are estimated with the LAK21 (Lavrentiadis et al. in Bull Earthq Eng ) GMM. The RVT calculations are performed with the V75 (Vanmarcke in ASCE Mech Eng Mech Division 98:425–446, 1972) peak factor model, the $$D_{a0.05-0.85}$$ D a 0.05 - 0.85 estimate of AS96 (Abrahamson and Silva in Apendix A: empirical ground motion models, description and validation of the stochastic ground motion model. Tech. rep.,. Brookhaven National Laboratory, New York) for the ground-motion duration, and BT15 (Boore and Thompson in Bull Seismol Soc Am 105:1029–1041, 2015) oscillator-duration model. The California subset of the NGAWest2 database (Ancheta et al. in Earthq Spectra 30:989–1005, 2014) is used to fit both models. The total aleatory standard deviation of each of the two non-ergodic PSA GMMs is approximately $$25\%$$ 25 % smaller than the total aleatory standard deviation of the corresponding ergodic PSA GMMs. This reduction has a significant impact on hazard calculations at large return periods. In remote areas, far from stations and past events, the reduction of aleatory variability is accompanied by an increase in epistemic uncertainty.

Funder

pg &e geosciences department

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference48 articles.

1. Abrahamson NA (2021) Haz45.3. https://github.com/abrahamson/HAZ

2. Abrahamson NA, Silva WJ (1996) Apendix A: empirical ground motion models, description and validation of the stochastic ground motion model. Tech. rep.,. Brookhaven National Laboratory, New York

3. Abrahamson NA, Atkinson GM, Boore DM, Bozorgnia Y, Campbell KW, Chiou BS, Idriss IM, Silva WJ, Youngs RR (2008) Comparisons of the NGA ground-motion relations. Earthq Spectra 24(1):45–66. https://doi.org/10.1193/1.2924363

4. Abrahamson NA, Silva WJ, Kamai R (2014) Summary of the ASK14 ground motion relation for active crustal regions. Earthq Spectra 30(3):1025–1055. https://doi.org/10.1193/070913EQS198M

5. Abrahamson NA, Al-Atik L, Bayless J, Dinsick A, Dreger DS, Gregor N, Kuehn N, Walling M, Watson-Lamprey J, Wooddell K, Youngs RR (2015) Southwestern united states ground motion characterization sshac level 3. Tech. rep., GeoPentech, rev. 2

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3