Pathologies of Between-Groups Principal Components Analysis in Geometric Morphometrics

Author:

Bookstein Fred L.ORCID

Abstract

Abstract Good empirical applications of geometric morphometrics (GMM) typically involve several times more variables than specimens, a situation the statistician refers to as “high p/n,” where p is the count of variables and n the count of specimens. This note calls your attention to two predictable catastrophic failures of one particular multivariate statistical technique, between-groups principal components analysis (bgPCA), in this high-p/n setting. The more obvious pathology is this: when applied to the patternless (null) model of p identically distributed Gaussians over groups of the same size, both bgPCA and its algebraic equivalent, partial least squares (PLS) analysis against group, necessarily generate the appearance of huge equilateral group separations that are fictitious (absent from the statistical model). When specimen counts by group vary greatly or when any group includes fewer than about ten specimens, an even worse failure of the technique obtains: the smaller the group, the more likely a bgPCA is to fictitiously identify that group as the end-member of one of its derived axes. For these two reasons, when used in GMM and other high-p/n settings the bgPCA method very often leads to invalid or insecure biological inferences. This paper demonstrates and quantifies these and other pathological outcomes both for patternless models and for models with one or two valid factors, then offers suggestions for how GMM practitioners should protect themselves against the consequences for inference of these lamentably predictable misrepresentations. The bgPCA method should never be used unskeptically—it is always untrustworthy, never authoritative—and whenever it appears in partial support of any biological inference it must be accompanied by a wide range of diagnostic plots and other challenges, many of which are presented here for the first time.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Reference38 articles.

1. Bookstein, F. L. (1982). Discussion: modeling and method. In H. Wold & K. Jöreskog (Eds.), Systems under indirect observation: Causality, structure, prediction (pp. 317–321). Amsterdam: North-Holland Publishing Company.

2. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.

3. Bookstein, F. L. (2014). Measuring and reasoning: Numerical inference in the science. Cambridge: Cambridge University Press.

4. Bookstein, F. L. (2015). Integration, disintegration, and self-similarity: Characterizing the scales of shape variation in landmark data. Evolutionary Biology, 42, 395–426.

5. Bookstein, F. L. (2016). The inappropriate symmetries of multivariate analysis in geometric morphometrics. Evolutionary Biology, 43, 277–313.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3