MORPHIX: Resolving sample identification bias in morphometrics analysis with a supervised machine learning package

Author:

Mohseni Nima1,Elhaik Eran1ORCID

Affiliation:

1. Lund University, Department of Biology

Abstract

Evolutionary biologists, primarily anatomists and ontogenists, employ modern geometric morphometrics to quantitatively analyse physical forms (e.g., skull morphology) and explore relationships, variations, and differences between samples and taxa using landmark coordinates. The standard approach comprises two steps, Generalised Procrustes Analysis (GPA) followed by Principal Component Analysis (PCA). PCA projects the superimposed data produced by GPA onto a set of uncorrelated variables, which can be visualised on scatterplots and used to draw phenetic, evolutionary, and ontogenetic conclusions. Recently, the use of PCA in genetic studies has been challenged. Due to PCA’s central role in morphometrics, we sought to evaluate the standard approach and claims based on PCA outcomes. To test PCA’s accuracy, robustness, and reproducibility using benchmark data of the crania of five papionin genera, we developed MORPHIX, a Python package containing the necessary tools for processing superimposed landmark data with classifier and outlier detection methods, which can be further visualised using various plots. We discuss the case of Homo Nesher Ramla , an archaic human with a questionable taxonomy. We found that PCA outcomes are artefacts of the input data and are neither reliable, robust, nor reproducible as field members may assume and that supervised machine learning classifiers are more accurate both for classification and detecting new taxa. Our findings raise concerns about PCA-based findings in 18,000 to 32,900 studies. Our work can be used to evaluate prior and novel claims concerning the origins and relatedness of inter- and intra-species and improve phylogenetic and taxonomic reconstructions.

Publisher

eLife Sciences Publications, Ltd

Reference115 articles.

1. Meet Nesher Ramla Homo: New form of human found [press release];The Times,2021

2. A Bitter Archaeological Battle Is Rocking Tel Aviv University [press release];Haaretz,2021

3. A Previously Unknown Type of Ancient Human Has Been Discovered in The Levant [press release];Science Alert,2021

4. Fossilised bones found in Israel could belong to mystery extinct humans [press release];The Guardian,2021

5. Morphometrics and phylogenetics: principal components of shape from cranial modules are neither appropriate nor effective cladistic characters;Journal of human evolution,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3