Coupling of iron and dissolved organic matter in lakes–selective retention of different size fractions

Author:

Riise Gunnhild,Haaland Ståle Leif,Xiao Yihua

Abstract

AbstractIncreasing concentration of iron (Fe) is observed in many boreal lakes, such as for the present study in Oslo Østmark, SE-Norway (1983–2018). As Fe-regulating processes are complex and dynamic, the link between mobilizing and retention processes is still not well understood. A seasonal study (2017–2018) from two headwaters, with medium and high dissolved organic matter (DOM) concentrations, showed that the loading of Fe to the lakes was highly dependent on flow conditions. Significantly higher values of Fe were related to autumn and winter periods with high runoff of highly colored and aromatic DOM compared to a severe drought period with minimum Fe values in the lakes. Compared to DOM, a significantly larger part of Fe was in a colloidal form, and a size-selective process (dependent on flow and water retention time) seemed to preferentially settle Fe compared to DOM. In contrast to Fe, the variability in DOM concentrations was moderate through the whole year. However, there were significant changes in the spectroscopic properties of DOM, with decreased fluorescence intensity and increased spectral slope during the warm dry season, indicating increased importance of DOM turnover in the lake. As Fe was transported from the catchment during high flow condition, at the same time as the oxic form of sulfur (SO42−), there was no sign of retention of Fe as FeS. We conclude that the mobilization and retention of compounds that are mainly in a colloidal form, such as Fe, are especially vulnerable to changes in flow conditions, suggesting increased variation in Fe levels in a future climate with increased frequency of flooding and drought episodes.

Funder

Nordic Centre of Excellence

Taishan Scholar Foundation of Shandong Province

Academy of Finland Grant

National Natural Science Foundation of China

National Key Research and Development Program

Norwegian University of Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3