Macroinvertebrate interactions stimulate decomposition in WWTP effluent-impacted aquatic ecosystems

Author:

van der Meer Tom V.ORCID,van der Lee Gea H.,Verdonschot Ralf C. M.,Verdonschot Piet F. M.

Abstract

AbstractAquatic ecosystems worldwide are impacted by an influx of nutrients and sludge particles from wastewater treatment plant (WWTP) effluents, leading to a degradation of benthic habitats and a loss of associated macroinvertebrate taxa. Hence, in habitats impacted by WWTPs, only a few tolerant macroinvertebrate taxa remain. These tolerant detritivore macroinvertebrate taxa play an important role in the degradation of organic matter, and biotic interactions between these taxa may either enhance or reduce the rate of sludge degradation. Therefore, the aim of the present study was to examine if the interaction between asellids and tubificids, both highly abundant in systems impacted by WWTP effluent, enhances the degradation of sludge. To this end, growth and reproduction of both taxa, sludge degradation and nutrient concentrations in the overlying water were measured in a 28-day laboratory experiment, subjecting WWTP sludge to 4 treatments: a control without macroinvertebrates, a tubificid, an asellid, and an asellid + tubificid treatment. Sludge degradation, phosphate concentration in the overlying water and asellid reproduction were enhanced when asellids and tubificids were jointly present, whereas tubificid growth and reproduction were hampered in comparison to the tubificid treatment. Hence, our results suggest that the biotic interactions between these tolerant detritivores stimulate sludge degradation, and thus possibly mitigating the negative impacts of WWTP-derived sludge particles on the benthic environment.

Funder

Water Board Hoogheemraadschap De Stichtse Rijnlanden

Water Board Hoogheemraadschap Hollands Noorderkwartier

Water Board Waterschap Rivierenland

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3