How do substrate types affect the seasonal composition and functional feeding groups variation of benthic insects in an arid region (northeastern Algeria)?

Author:

MERADI Kenza1ORCID,Bounar Rabah1,Benzina Imène2,Meradi Salah3,Bachir Abdelkrim Si2,Céréghino Régis4

Affiliation:

1. University of M'sila: Universite Mohamed Boudiaf M'sila

2. University of Batna 2: Universite Batna 2

3. University of Batna 1 Hadj Lakhdar Institute of Veterinary and Agricultural Sciences: Universite de Batna 1 Hadj Lakhdar Institut des Sciences Veterinaires et des Sciences Agronomiques

4. Paul Sabatier University: Universite Toulouse III-Paul Sabatier

Abstract

Abstract The diversity of bottom substrates is a primary driver of taxonomic richness and species abundance patterns of freshwater benthic insects in space and time. Here, we examine the influence of substrate composition on the seasonal patterns of benthic insect communities in streams of arid regions. Benthic insects were sampled monthly over a year at three sampling sites distributed along the Bouilef stream within the Belezma biosphere reserve (Algeria). Different substrate types (sand, gravel, pebbles, boulders, and emergent macrophytes) were sampled in the rainy and dry seasons. During the 2 studied seasons, a total of 8599 insects belonging to 6 orders, 26 families, and 39 genera/species were sampled and identified. Student's t-test analysis showed that season influences significantly the mean abundance of benthic insects, which increases in the rainy season. However, the season does not affect taxa richness. Substrate types influence taxa composition and variation of benthic insect communities. The results showed that pebbles and boulders are the most populated by gathering and filtering collectors in terms of taxa abundance. Emergent macrophytes are more favorable for herbivores shredders. Principal Coordinates Analysis ‘’PCoA’’ also showed that pebbles and boulders differed significantly from other substrates, whereas sand and gravel substrates exhibited similar taxa mean abundance. Such assessments can help propose conservation measures needed to successfully safeguard these fragile ecosystems.

Publisher

Research Square Platform LLC

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3