Ecological effects of mosquito control with Bti: evidence for shifts in the trophic structure of soil- and ground-based food webs

Author:

McKie Brendan G.ORCID,Taylor Astrid,Nilsson Tobias,Frainer André,Goedkoop Willem

Abstract

AbstractThe microbial control agent Bacillus thuringiensis var. israelensis (Bti) has been successfully used worldwide to reduce abundances of biting Nematocera (Diptera), often with little direct impact on non-target organisms observed. However, the potential for additional indirect effects on other ecosystem properties, including on trophic linkages within food webs, is poorly known. We investigated the effects of multiple-year mosquito control treatments using the Bti product VectoBac®-G on the stable isotope composition of epigeal and soil-based consumers inhabiting replicate floodplains along the River Dalälven, Sweden. We observed significant changes in the isotopic composition of detritivores feeding at the base of floodplain food webs. Enchytraeid worms were characterised by 3.5% higher δ13C values in treated floodplains, suggesting increased consumption of δ13C-enriched food. The overall range of community-wide δ15N values was 56% greater in the treated floodplains, whilst δ15N values of oribatid mites were elevated by 97%. These results suggest extra fractionation in the transfer of nitrogen through floodplain food chains. We conjecture that the ecological mechanisms driving these food web shifts are (1) the mass mortality of high δ13C A. sticticus larvae, which leaves high concentrations of dead mosquito biomass deposited on soils at local scales, after the floodwaters have receded and (2) incorporation of the very high δ13C-enriched corn particles comprising the bulk of the VectoBac®-G product into floodplain food webs. Our results suggest that repeated applications of Bti might have wider, still largely unknown implications for nutrient and energy cycles within floodplain ecosystems.

Funder

Naturvårdsverket

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3