Effects of mosquito control using the microbial agent Bacillus thuringiensis israelensis (Bti) on aquatic and terrestrial ecosystems: a systematic review

Author:

Land MagnusORCID,Bundschuh MircoORCID,Hopkins Richard J.ORCID,Poulin BrigitteORCID,McKie Brendan G.ORCID

Abstract

Abstract Background The bacterium Bacillus thuringiensis serovar israelensis (Bti) is commercially produced in various formulations for use as a larvicide worldwide, targeting especially the aquatic larval stage of mosquitoes. However, there is a concern that repeated Bti treatments may have both direct and indirect impacts on non-target organisms (NTOs) and the ecosystems they inhabit. This review evaluates the evidence for such impacts. Methods Literature was searched using six bibliographic databases, two search engines, and on specialist web sites. Eligibility screening was performed in two steps on (1) title/abstract, with consistency among reviewers assessed by double-screening 557 articles and (2) full text. Articles included after full text screening were critically appraised independently by two reviewers. Disagreements were reconciled through discussions. Key parameters of included studies are presented in narrative synthesis tables, including risk of bias assessments. Meta-analyses comparing treated with untreated ecosystems and using either the raw mean difference or log response ratio as effect size were performed. Review findings Ninety-five articles covering 282 case studies were included in the review. From these, we identified 119 different response variables, which were divided into nine outcome categories. Most studies investigated NTO abundance or life history (reproduction related outcomes), but diversity and community composition are also well represented as outcome categories. The studies are highly variable in methodology, rigor, and spatio-temporal scale, spanning 1 day to 21 years and from < 1m2 to > 10,000 m2. Our metanalyses revealed a consistent negative effect of Bti treatment on abundances of Chironomidae and Crustacea, and also on chironomid emergence, although from a more restricted set of studies and regions. For most remaining response variables, we judged meta-analysis unfeasible, due to low study numbers or insufficient reporting of methods and results. Conclusions There is now a significant body of studies documenting effects of mosquito control using Bti on NTOs or other ecosystem properties, especially associated with negative effects on Chironomidae, as apparent from our meta-analyses. Accordingly, we suggest the potential for negative NTO or other ecosystem effects of Bti treatment should not be discounted a priori. Once a decision to proceed with Bti treatment has been taken, priority should be given to a well-designed program of ongoing monitoring and assessment. The paucity of rigorous studies conducted with low bias risk for most response variables undermines our capacity for evaluating how common many of the effects documented might be. Future research would benefit from a rigorous and well-replicated approach to studying Bti impacts in semi-field mesocosms or in the field, combined with a greater rigor in reporting key methodological details. A greater focus is needed on understanding the environmental factors which regulate the wider effects of mosquito control using Bti on NTOs and ecosystems, to enhance our capacity for predicting where and when Bti is most likely to have additional, negative and indirect ecological impacts.

Funder

Svenska Forskningsrådet Formas

The Swedish Research Council Formas

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Ecology

Reference113 articles.

1. Ramírez-Lepe M, Ramírez-Suero M. Biological control of mosquito larvae by Bacillus thuringiensis subsp. israelensis. In: Rijeka PF, editor. Insecticides. Croatia: IntechOpen; 2012. p. 239–64.

2. Poulin B, Tetrel C, Lefebvre G. Impact of mosquito control operations on waterbirds in a Camargue nature reserve. Wetlands Ecol Manag. 2022;30(5):1049–64.

3. Harris CM. Aircraft operations near concentrations of birds in Antarctica: the development of practical guidelines. Biol Conserv. 2005;125(3):309–22.

4. Merritt RW, Walker ED, Wilzbach MA, Cummins KW, Morgan WT. A broad evaluation of Bti for black fly (Diptera, Simuliidae) control in a Michigan river—efficacy, carry and nontarget effects on invertebrates and fish. J Am Mosq Control Assoc. 1989;5(3):397–415.

5. Boisvert M, Boisvert J. Effects of Bacillus thuringiensis var israelensis on target and nontarget organisms: a review of laboratory and field experiments. Biocont Sci Technol. 2000;10(5):517–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3