A Combined Numerical and Experimental Investigation of Cycle-to-Cycle Variations in an Optically Accessible Spark-Ignition Engine

Author:

Chu Hongchao,Welch Cooper,Elmestikawy Hani,Cao Shangyi,Davidovic Marco,Böhm Benjamin,Dreizler Andreas,Pitsch Heinz

Abstract

AbstractA combined numerical and experimental investigation is carried out to analyze the cycle-to-cycle variations (CCV) in an optically accessible spark-ignition engine with port fuel injection. A stable and an unstable operating condition is considered. Well-established turbulence, combustion, and ignition models are employed in the large-eddy simulations (LES). High-speed measurements of the velocity field via particle image velocimetry and flame imaging in the tumble plane are conducted in the experiments. A detailed comparison between LES and experiments is carried out, including the in-cylinder pressure, the flow fields, the spatial flame distribution, and the fields conditioned on fast and slow cycles. Good agreement is achieved for the variables considering all cycles; yet, some discrepancies are observed for the conditionally averaged quantities. A systematic quantitative correlation analysis between the selected influencing variables and the CCV is presented, in which the influencing variables are extracted from different length scales (r = 3 mm, 12 mm, and 43 mm) and the CCV are distinguished between the early flame kernel development and later flame propagation. Even though the most relevant influencing parameters are different for the two operating conditions, the location of the coherent vortex structure is found to be important for the CCV of both cases.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3