A Comparison of Evaluation Methodologies of the Fractal Dimension of Premixed Turbulent Flames in 2D and 3D Using Direct Numerical Simulation Data

Author:

Herbert Marco,Chakraborty Nilanjan,Klein Markus

Abstract

AbstractA Direct Numerical Simulation (DNS) database of statistically planar flames ranging from the wrinkled flamelets to the thin reaction zones regime and DNS data for a Bunsen premixed flame representing the wrinkled flamelets regime have been utilised to evaluate the fractal dimensions of flame surfaces using the filtering dimension method, the box-counting algorithm and the correlation dimension approach. The fractal dimension evaluated based on the fully resolved three-dimensional data has been found to be reasonably approximated by adding unity to the equivalent fractal dimension evaluated based on two-dimensional projections irrespective of the methodology of extracting fractal dimension. This indicates that the flame surface can be approximated as a self-similar fractal surface for the range of Karlovitz and Damköhler numbers considered here. While all methods, provide results identical to each other for benchmark problems, it has been found that the fractal dimension evaluation based on box-counting method provides almost identical results as that obtained using the filtering dimension method for both three and two dimensions, while the fractal dimensions based on the correlation dimension tend to be slightly smaller. The findings of the current analysis have the potential to be used to reliably estimate the actual fractal dimension in 3D based on experimentally obtained 2D binarised reaction progress variable field. The inner cut-off scales estimated based on all three methodologies yield comparable results in terms of order of magnitude with the box-counting method predicting a smaller value of inner cut-off scale in comparison to other methods. The execution times for fractal dimension extraction based on filtering dimension and box-counting methodologies are found to be comparable but the correlation dimension method is found to be considerably faster than the two alternative approaches and provides results consistent with theoretical bounds in all cases.

Funder

EPSRC

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3