Abstract
AbstractDue to the continuous increase in available computing power, the Large Eddy Simulation (LES) of two-phase flows started to receive more attention in recent years. Well-established models from single-phase flows are often used to close the sub-grid scale convective momentum transport and recently some modifications have been suggested to account for the jump of density and viscosity at the interface of multi-phase flows. However, additional unclosed terms in multi-phase flows, which are absent in single-phase flows, often remain ignored. This paper focuses on the crucial gaps in literature, namely the modeling of volume fraction advection and surface tension effects on sub-grid level. An a-priori analysis has been conducted for this purpose, i.e. the Direct Numerical Simulation of an academic two-phase flow configuration (single wobbling bubble in a turbulent background flow) has been explicitly filtered (corresponding to implicit filtering in actual LES) for varying filter width and the corresponding sub-grid terms have been compared to potentially suitable model expressions. Besides other approaches, adequately formulated models based on the scale similarity principle emerged to be promising candidates for both sub-grid volume fraction advection as well as sub-grid surface tension effects. In this context, special attention has to be paid to the secondary filter. Owing to the nature of the quasi-singular surface tension term, surface-weighted filtering may be more appropriate and robust than standard volume filtering.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献