Enforcing accurate volume conservation in VOF‐based long‐term simulations of turbulent bubble‐laden flows on coarse grids

Author:

Trautner Elias1ORCID,Hasslberger Josef1ORCID,Cifani Paolo2ORCID,Klein Markus1ORCID

Affiliation:

1. Department of Aerospace Engineering, Institute of Applied Mathematics and Scientific Computing University of the Bundeswehr Munich Neubiberg Germany

2. Faculty EEMCS, Multiscale Modeling and Simulation University of Twente Enschede The Netherlands

Abstract

AbstractThis study proposes two different strategies to enforce accurate volume conservation in volume‐of‐fluid (VOF)‐based simulations of turbulent bubble‐laden flows on coarse grids. It is demonstrated that, without a correction, minimal volume errors on a time‐step level, caused by the under‐resolution of the interface, can accumulate to significant deviations from the intended flow conditions despite the comparably good volume conservation properties of the geometric VOF method. In particular, large volume errors are observed for challenging setups combining coarse grid resolutions and comparably high Reynolds and Eötvös numbers. The problem is reinforced for long‐term simulations in periodic domains, which are often performed to collect flow statistics of bubbly flows. The first proposed volume conservation method simply corrects the volume error of a bubble by uniformly adding or removing the respective amount of gas volume in the interface cells. The second proposed method performs an additional reconstruction and advection step of the VOF field using a non‐divergence‐free velocity field, which can be interpreted as a slight dilatation or contraction of the bubble. A comparison between the global flow statistics as well as the individual bubble dynamics for both volume conservation methods reveals that the results are quasi‐identical for a number of challenging test cases, while the gas volume is accurately conserved. The proposed methods allow to perform numerical simulations of freely deformable bubbles in turbulent flows for setups that have previously been out of reach for this numerical framework.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3