Shock-Wave/Boundary-Layer Interactions in Transitional Rectangular Duct Flows

Author:

Lusher David J.,Sandham Neil D.

Abstract

AbstractShock-wave/boundary-layer interactions (SBLI) are an important feature of high-speed gas dynamics. In many numerical studies of SBLI span-periodicity is assumed to reduce computational complexity. However, span-periodicity is not a valid assumption for aeronautical applications such as supersonic engine intakes where lateral confinement leads to highly three-dimensional behaviour. In this work transitional oblique SBLI are simulated for a rectangular duct with a $$\theta _{sg} = 5^{\circ }$$ θ sg = 5 shock generator ramp at Mach 2. The baseline configuration is a duct with an aspect ratio of 0.5. Time-dependent disturbances are added to the base laminar flow via wall localised blowing/suction strips to obtain intermittent transition upstream of the SBLI. Two forcing configurations are evaluated to assess the response of the SBLI to different tripping locations. The transition is observed to develop first in the low-momentum corners of the duct and spread out in a wedge shape. The central separation bubble is seen to react dynamically to oncoming turbulent spots, shifting laterally across the span. While instantaneous corner separations do occur, the time-averaged corner flow remains attached. Comparisons to a one-to-one aspect ratio duct show that the SBLI is heavily dependent on aspect ratio; the wider duct exhibited significantly larger regions of flow-reversal due to a strengthened interaction.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3