Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels

Author:

Burton D. M. F.,Babinsky H.

Abstract

AbstractExperiments are conducted to examine the mechanisms behind the coupling between corner separation and separation away from the corner when holding a high-Mach-number ${M}_{\infty } = 1. 5$ normal shock in a rectangular channel. The ensuing shock wave interaction with the boundary layer on the wind tunnel floor and in the corners was studied using laser Doppler anemometry, Pitot probe traverses, pressure sensitive paint and flow visualization. The primary mechanism explaining the link between the corner separation size and the other areas of separation appears to be the generation of compression waves at the corner, which act to smear the adverse pressure gradient imposed upon other parts of the flow. Experimental results indicate that the alteration of the $\lambda $-region, which occurs in the supersonic portion of the shock wave/boundary layer interaction (SBLI), is more important than the generation of any blockage in the subsonic region downstream of the shock wave.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent progress in conical shock wave/boundary layer interaction with spanwise pressure gradient;Propulsion and Power Research;2024-08

2. Simulation and analysis of the over-expanded flow field in asymmetric nozzles with lateral expansion;Journal of Physics: Conference Series;2024-05-01

3. An Algorithm for the Visualization of Shock Waves in Supersonic Flow;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

4. Analysis of four wall flow control in supersonic duct using ramped-vanes micro vortex generator;CEAS Aeronautical Journal;2024-03-11

5. Shock-Induced Separation and Control in a 4.32-Aspect-Ratio Test Section;Journal of Propulsion and Power;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3