Turbulence Effect on Transpiration Cooling Effectiveness Over a Flat Plate in Hypersonic Flow and Sensitivity to Injection Parameters

Author:

Cerminara Adriano

Abstract

AbstractThis work presents a numerical study of coolant porous injection in hypersonic turbulent boundary layer, with an analysis of blowing ratio and pore diameter effects on the cooling performance. Direct numerical simulations (DNS) are carried out for a Mach 5 flow over a flat plate with induced transition, and with a porous injection model to mimic injection from a bed of equally-spaced circular pores. The cooling performance in turbulent flow is compared to laminar 2D flow cases. Results show downstream development of a turbulent wedge-shaped structure, where a dramatic decay of the near-wall coolant concentration is observed. Blowing ratio and pore size are seen to affect the calmed and transitional regions, however they have a marginal or negligible effect within the turbulent region. A cooling effectiveness deficit/reduction of 15% to 30% for the turbulent cases, with respect to the laminar 2D cases, is observed above the injection region due to the 3D flow effects associated with the porous injection, whereas it reaches values as high as 80% in the developed turbulent region due to the turbulent convective effects. The present results shed light on the effects of turbulence on porous wall cooling and clearly indicate that alternative (ad-hoc) injection strategies and parameter calibration are needed to guarantee appropriate wall cooling in a turbulent flow.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3