High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling

Author:

Baldauf S.1,Schulz A.1,Wittig S.1

Affiliation:

1. Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (TH), 76128 Karlsruhe, Germany

Abstract

Local heat transfer coefficients on a flat plate surface downstream a row of cylindrical ejection holes were investigated. The parameters blowing angle, hole pitch, blowing rate, and density ratio were varied over a wide range, emphasizing engine relevant conditions. A high-resolution IR-thermography technique was used for measuring surface temperature fields. Local heat transfer coefficients were obtained from a Finite Element analysis. IR-determined surface temperatures and backside temperatures of the cooled test plate measured with thermocouples were applied as boundary conditions in this heat flux computation. The superposition approach was employed to obtain the heat transfer coefficient hf based on the difference between actual wall temperatures and adiabatic wall temperatures in the presence of film cooling. The hf data are given for an engine relevant density ratio of 1.8. Therefore, heat transfer results with different wall temperature conditions and adiabatic film cooling effectiveness results for identical flow situations (i.e., constant density ratios) were combined. Characteristic surface patterns of the locally resolved heat transfer coefficients hf are recognized and quantified as the different ejection parameters are changed. The detailed results are used to discuss the specific local heat transfer behavior in the presence of film cooling. They also provide a base of surface data essential for the validation of the heat transfer capabilities of CFD codes in discrete hole film cooling.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3