Evolution of Flame Displacement Speed Within Flame Front in Different Regimes of Premixed Turbulent Combustion

Author:

Chakraborty Nilanjan,Dopazo Cesar,Dunn Harry,Ahmed Umair

Abstract

AbstractA transport equation for the flame displacement speed evolution in premixed flames is derived from first principles, and the mean behaviours of the terms of this equation are analysed based on a Direct Numerical Simulation database of statistically planar turbulent premixed flames with a range of different Karlovitz numbers. It is found that the regime of combustion (or Karlovitz number) affects the statistical behaviour of the mean contributions of the terms of the displacement speed transport equation which are associated with the normal strain rate and curvature dependence of displacement speed. The contributions arising from molecular diffusion and flame curvature play leading order roles in all combustion regimes, whereas the terms arising from the flame normal straining and reactive scalar gradient become leading order contributors only for the flames with high Karlovitz number values representing the thin reaction zones regime. The mean behaviours of the terms of the displacement speed transport equation indicate that the effects arising from fluid-dynamic normal straining, reactive scalar gradient and flame curvature play key roles in the evolution of displacement speed. The mean characteristics of the various terms of the displacement speed transport equation are explained in detail and their qualitative behaviours can be expounded based on the behaviours of the corresponding terms in the case of 1D steady laminar premixed flames. This implies that the flamelet assumption has the potential to be utilised for the purpose of any future modelling of the unclosed terms of the displacement speed transport equation even in the thin reaction zones regime for moderate values of Karlovitz number.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3