Influence of Rotating Wheels and Moving Ground Use on the Unsteady Wake of a Small-Scale Road Vehicle

Author:

Rejniak Aleksandra AnnaORCID,Gatto Alvin

Abstract

AbstractNew insights into how different ground simulation methods affect road vehicle aerodynamics are presented. Experiments are conducted on a 1/24th-scale model, representative of a Heavy Goods Vehicle, at a Reynolds number, based on width of 2.3 × 105. Particular focus lay in characterising differences in unsteady wake development, with mean drag, base pressures, and wake velocities quantified, compared, and evaluated. Distinctly, these tests include the effects of elevated blockage ratio and wheel rotation. Results show moving ground use can have a substantial influence under these conditions, with increases in wake length and average base pressure coefficient of 17% and 9%, respectively. The dominant wake dynamics, characterised by a global streamwise oscillation commonly referenced as the bubble pumping mode, was also found dependent with asymmetric shedding frequencies from both vertical and horizontal base edges higher with static ground use. For these conditions, development of a low-frequency turbulence source, near omni-directional in nature, positioned behind the model, further contaminates the flow-field. This feature disappears with moving ground use. Both the nature and characteristics of the turbulence generated behind the wheels were also found to evolve differently, with a moving ground promoting stronger and more defined oscillatory behaviour up to model mid-height, two-and-a-half widths downstream. Overall, these results highlight that while variations in time-independent quantities to differing ground simulation can often be very subtle, prompting the interpretation of negligible overall effects, in-depth consideration from a time-dependent perspective may lead to a different conclusion.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3