Modeling Object Motion on Arbitrary Unstructured Grids Using an Invariant Principle of Computational Domain Topology: Key Features

Author:

Sarazov Aleksey12,Kozelkov Andrey123ORCID,Strelets Dmitriy3ORCID,Zhuchkov Roman12

Affiliation:

1. Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics, Nizhny Novgorod Region, Sarov 607188, Russia

2. Department of Applied Mathematics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 ul. Minina, Nizhny Novgorod 603155, Russia

3. Aircraft Design and Certification Department, Moscow Aviation Institute, Volokolamskoe Shosse, 4, Moscow 125993, Russia

Abstract

This paper uses a finite volume algorithm to address the numerical modeling of fluid flow around moving bodies. The Navier–Stokes equations, which describe the flow of viscous compressible gas, along with key boundary conditions and discretization schemes, are presented. As the motion of boundaries typically leads to changes in the control volumes, the basic discretization schemes need to be adapted. This paper provides a detailed discussion on the adaptation of the initial system to deforming boundaries while preserving communication topology. The method for calculating the boundary velocity is a crucial element of the numerical scheme. The paper proposes an approach to reconstruct the boundary velocity vector using deformation analysis and the condition of geometric conservation. This approach ensures correct simulation results for arbitrary unstructured computational grids. A comparison of two approaches to reconstructing the boundary velocity vector for characteristic aviation problems in the direct formulation is presented. It is shown that the proposed approach allows for more accurate modeling of object motion on arbitrary grids using the “invariant” principle of the computational domain topology.

Funder

Ministry of Science and Higher Education of the Russian Federation

Science and Universities National Project under the Young Scientists Lab Program of the RF Ministry of Education and Science

Council of the Grants of the President of the Russian Federation for state support of Leading Scientific Schools of the Russian Federation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3