Blocking retrograde axonal transport of autophagosomes contributes to sevoflurane-induced neuron apoptosis in APP/PS1 mice

Author:

Xu Mingliang,Feng Jianguo,Tang Mingxi,Guo Qingxi,Zhan Jian,Zhu Fuzu,Lei Hong,Kang QingmeiORCID

Abstract

AbstractAutophagy, a crucial pathway for the degradation of proteins in eukaryotic cells, is linked to the development of Alzheimer’s disease (AD), and the accumulated autophagosomes in the cells resulting in the death of cells. Sevoflurane can impair spatial learning and memory in mice with AD and lead to the apoptosis of nerve cells; however, the underlying mechanisms remain unknown. We aim to explore the effects and underlying mechanisms of sevoflurane in APPswe/PS1ΔE9 double-transgenic mice. 51 heterozygous APPswe/PS1ΔE9 double-transgenic mice were involved and divided into three groups, including control group, sham group and sevoflurane group. Morris water maze experiment was used to test the learning and memory abilities of mice, flow cytometry was conducted to detect apoptosis and mitochondrial membrane potential of brain cells in mice, transmission electron microscopy was used to observe the number of autophagosomes at the axon in mice, and western blot was carried out to detect the expression of Bax, Bcl-2, LC3II, P62, KIF3B and DIC proteins of brain cells in mice. In our study, we found that significantly longer escape latencies, fewer crossings of the platform and shorter time spent in the target quadrant of the morris water maze experiment in the sevoflurane group. Flow cytometry showed cellular apoptosis was increased and the membrane potential of the mitochondria was reduced of brain cells in the sevoflurane group. Transmission electron microscopy displayed that there was a remarkable upregulation of autophagosomes at the axon of brain cells in mice after treatment of sevoflurane. Western blot demonstrated that the expression of Bax, LC3II, P62 and KIF3B proteins were elevated, and the expression of Bcl-2 and DIC proteins were reduced in the sevoflurane group. Sevoflurane impaired acquisition learning and memory function, promoted the apoptosis of hippocampal neurons in APPswe/PS1ΔE9 double-transgenic mice, and the mechanism might be related to the activation of autophagy along with the disruption of autophagosomes retrograde transport in axons.

Funder

the Scientific Research Foundation of Southwest Medical University

the Scientific Research Foundation of Affiliated Hospital of Southwest Medical University

Publisher

Springer Science and Business Media LLC

Subject

Clinical Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3