Abstract
AbstractWe will prove that an origin-symmetric star-convex body K with sufficiently smooth boundary and such that every hyperplane section of K passing through the origin is a body of affine revolution, is itself a body of affine revolution. This will give a positive answer to the recent question asked by Bor, Hernández-Lamoneda, Jiménez de Santiago, and Montejano-Peimbert, though with slightly different prerequisites.
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference17 articles.
1. Auerbach, H., Mazur, S., Ulam, S.: Sur une propriété caractéristique de l’ellipsoïde. Monatshefte für Mathematik und Physik 42(1), 45–48 (1935)
2. Bezdek, K., Lángi, Z., Naszódi, M., Papez, P.: Ball-polyhedra. Discrete Comput. Geom. 38(2), 201–230 (2007)
3. Bor, G., Hernández-Lamoneda, L., Jiménez de Santiago, V., Montejano, L.: On the isometric conjecture of Banach. Geom. Topol. 25(5), 2621–2642 (2021)
4. Bracho, J., Montejano, L.: On the complex Banach conjecture. J. Convex Anal. 28, 1211–1222 (2021)
5. Dvoretzky, A.: A theorem on convex bodies and applications to Banach spaces. Proc. Natl. Acad. Sci. USA 45(2), 223–226 (1959)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献