Characterization of the sphere and of bodies of revolution by means of Larman points

Author:

Alfonseca M. Angeles1,Cordier M.2,Jerónimo-Castro J.3,Morales-Amaya E.4

Affiliation:

1. North Dakota State University , Fargo , USA

2. Chatham University , Pittsburgh , USA

3. Universidad Autónoma de Querétaro, Facultad de Ingeniería , Querétaro Mexico

4. Universidad Autónoma de Guerrero, Facultad de Matemáticas , Guerrero Mexico

Abstract

Abstract Let n ≥ 3 and let K ⊂ ℝ n be a convex body. A point p ∈ int K is said to be a Larman point of K if for every hyperplane Π passing through p, the section ΠK has an (n – 2)-plane of symmetry. If p is a Larman point of K and for every section ΠK, p is in the corresponding (n – 2)-plane of symmetry, then we call p a revolution point of K. We conjecture that if K contains a Larman point which is not a revolution point, then K is either an ellipsoid or a body of revolution. This generalizes a conjecture of Bezdek for n = 3. We prove several results related to the conjecture for strictly convex origin symmetric bodies. Namely, if K ⊂ ℝ n is a strictly convex origin symmetric body that contains a revolution point p which is not the origin, then K is a body of revolution. This generalizes the False Axis of Revolution Theorem in [7]. We also show that if p is a Larman point of K ⊂ ℝ3 and there exists a line L such that pL and, for every plane Π passing through p, the line of symmetry of the section ΠK intersects L, then K is a body of revolution (in some cases, K is a sphere). We obtain a similar result for projections of K. Additionally, for K ⊂ ℝ n with n ≥ 4, we show that if every hyperplane section or projection of K is a body of revolution and K has a unique diameter D, then K is a body of revolution with axis D.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3