Integer Carathéodory results with bounded multiplicity

Author:

Kuhlmann Stefan

Abstract

AbstractThe integer Carathéodory rank of a pointed rational cone C is the smallest number k such that every integer vector contained in C is an integral non-negative combination of at most k Hilbert basis elements. We investigate the integer Carathéodory rank of simplicial cones with respect to their multiplicity, i.e., the determinant of the integral generators of the cone. One of the main results states that simplicial cones with multiplicity bounded by five have the integral Carathéodory property, that is, the integer Carathéodory rank equals the dimension. Furthermore, we give a novel upper bound on the integer Carathéodory rank that depends on the dimension and the multiplicity. This bound improves upon the best known upper bound on the integer Carathéodory rank if the dimension exceeds the multiplicity. At last, we present special cones that have the integral Carathéodory property such as certain dual cones of Gorenstein cones.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3