Sparse representation of vectors in lattices and semigroups

Author:

Aliev Iskander,Averkov Gennadiy,De Loera Jesús A.,Oertel TimmORCID

Abstract

AbstractWe study the sparsity of the solutions to systems of linear Diophantine equations with and without non-negativity constraints. The sparsity of a solution vector is the number of its nonzero entries, which is referred to as the $$\ell _0$$ 0 -norm of the vector. Our main results are new improved bounds on the minimal $$\ell _0$$ 0 -norm of solutions to systems $$A\varvec{x}=\varvec{b}$$ A x = b , where $$A\in \mathbb {Z}^{m\times n}$$ A Z m × n , $${\varvec{b}}\in \mathbb {Z}^m$$ b Z m and $$\varvec{x}$$ x is either a general integer vector (lattice case) or a non-negative integer vector (semigroup case). In certain cases, we give polynomial time algorithms for computing solutions with $$\ell _0$$ 0 -norm satisfying the obtained bounds. We show that our bounds are tight. Our bounds can be seen as functions naturally generalizing the rank of a matrix over $$\mathbb {R}$$ R , to other subdomains such as $$\mathbb {Z}$$ Z . We show that these new rank-like functions are all NP-hard to compute in general, but polynomial-time computable for fixed number of variables.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integer Carathéodory results with bounded multiplicity;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2024-04-12

2. New Bounds for the Integer Carathéodory Rank;SIAM Journal on Optimization;2024-01-09

3. On Matrices over a Polynomial Ring with Restricted Subdeterminants;Lecture Notes in Computer Science;2024

4. Integer Points in Arbitrary Convex Cones: The Case of the PSD and SOC Cones;Lecture Notes in Computer Science;2024

5. Sparsity and Integrality Gap Transference Bounds for Integer Programs;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3