Sparse representation of vectors in lattices and semigroups
-
Published:2021-05-04
Issue:
Volume:
Page:
-
ISSN:0025-5610
-
Container-title:Mathematical Programming
-
language:en
-
Short-container-title:Math. Program.
Author:
Aliev Iskander, Averkov Gennadiy, De Loera Jesús A., Oertel TimmORCID
Abstract
AbstractWe study the sparsity of the solutions to systems of linear Diophantine equations with and without non-negativity constraints. The sparsity of a solution vector is the number of its nonzero entries, which is referred to as the $$\ell _0$$
ℓ
0
-norm of the vector. Our main results are new improved bounds on the minimal $$\ell _0$$
ℓ
0
-norm of solutions to systems $$A\varvec{x}=\varvec{b}$$
A
x
=
b
, where $$A\in \mathbb {Z}^{m\times n}$$
A
∈
Z
m
×
n
, $${\varvec{b}}\in \mathbb {Z}^m$$
b
∈
Z
m
and $$\varvec{x}$$
x
is either a general integer vector (lattice case) or a non-negative integer vector (semigroup case). In certain cases, we give polynomial time algorithms for computing solutions with $$\ell _0$$
ℓ
0
-norm satisfying the obtained bounds. We show that our bounds are tight. Our bounds can be seen as functions naturally generalizing the rank of a matrix over $$\mathbb {R}$$
R
, to other subdomains such as $$\mathbb {Z}$$
Z
. We show that these new rank-like functions are all NP-hard to compute in general, but polynomial-time computable for fixed number of variables.
Funder
National Science Foundation Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Software
Reference34 articles.
1. Aliev, I., Averkov, G., De Loera, J.A., Oertel, T.: Optimizing sparsity over lattices and semigroups. In: Integer Programming and Combinatorial Optimization, Volume 12125 of Lecture Notes in Comput. Sci., pp. 40–51. Springer, Cham (2020) 2. Aliev, I., De Loera, J.A., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28(3), 2152–2157 (2018) 3. Aliev, I., De Loera, J.A., Oertel, T., O’Neill, C.: Sparse solutions of linear diophantine equations. SIAM J. Appl. Algebra Geom. 1(1), 239–253 (2017) 4. Averkov, G., Chavez, A., De Loera, J.A., Gillespie, B.: The lattice of cycles of an undirected graph. Linear Algebra Appl. 611, 213–236 (2021) 5. Baldoni, V., Berline, N., De Loera, J., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., Wu, J.: A User’s Guide for LattE Integrale v1.7.2 (2014). http://www.math.ucdavis.edu/~latte/
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|