Abstract
AbstractWe provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if $$E\ne \mathcal O_X$$
E
≠
O
X
is simple, then the natural map $${{\,\mathrm{\mathsf {Ext}}\,}}^1(E,E)\rightarrow {{\,\mathrm{\mathsf {Ext}}\,}}^1(E^{[n]},E^{[n]})$$
Ext
1
(
E
,
E
)
→
Ext
1
(
E
[
n
]
,
E
[
n
]
)
is injective for every n. Along with previous results, this implies that $$E\mapsto E^{[n]}$$
E
↦
E
[
n
]
defines an embedding of the moduli space of stable bundles of slope $$\mu \notin [-1,n-1]$$
μ
∉
[
-
1
,
n
-
1
]
on the curve X into the moduli space of stable bundles on the symmetric product $$X^{(n)}$$
X
(
n
)
. The image of this embedding is, in most cases, contained in the singular locus. For line bundles on a non-hyperelliptic curve, the embedding identifies the Brill–Noether loci of X with the loci in the moduli space of stable bundles on $$X^{(n)}$$
X
(
n
)
where the dimension of the tangent space jumps. We also prove that $$E^{[n]}$$
E
[
n
]
is simple if E is simple.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference38 articles.
1. Ancona, V., Ottaviani, G.: Stability of special instanton bundles on $${ P}^{2n+1}$$. Trans. Am. Math. Soc. 341(2), 677–693 (1994)
2. Aprodu, M., Nagel, J.: Koszul cohomology and algebraic geometry. University Lecture Series, vol. 52. American Mathematical Society, Providence (2010)
3. Arbarello E., Cornalba M., Griffiths P.A., Harris J.: Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267 [Fundamental Principles of Mathematical Sciences]. Springer, New York (1985)
4. Basu, S., Dan, K.: Stability of secant bundles on the second symmetric power of curves. Arch. Math. (Basel) 110(3), 245–249 (2018)
5. Biswas, I., Nagaraj, D.S.: Stability of secant bundles on second symmetric power of a curve. In Commutative algebra and algebraic geometry (CAAG-2010), Ramanujan Math. Soc. Lect. Notes Ser., vol. 17, pp. 13–18. Ramanujan Math. Soc., Mysore (2013)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献