Extension groups of tautological bundles on symmetric products of curves

Author:

Krug AndreasORCID

Abstract

AbstractWe provide a spectral sequence computing the extension groups of tautological bundles on symmetric products of curves. One main consequence is that, if $$E\ne \mathcal O_X$$ E O X is simple, then the natural map $${{\,\mathrm{\mathsf {Ext}}\,}}^1(E,E)\rightarrow {{\,\mathrm{\mathsf {Ext}}\,}}^1(E^{[n]},E^{[n]})$$ Ext 1 ( E , E ) Ext 1 ( E [ n ] , E [ n ] ) is injective for every n. Along with previous results, this implies that $$E\mapsto E^{[n]}$$ E E [ n ] defines an embedding of the moduli space of stable bundles of slope $$\mu \notin [-1,n-1]$$ μ [ - 1 , n - 1 ] on the curve X into the moduli space of stable bundles on the symmetric product $$X^{(n)}$$ X ( n ) . The image of this embedding is, in most cases, contained in the singular locus. For line bundles on a non-hyperelliptic curve, the embedding identifies the Brill–Noether loci of X with the loci in the moduli space of stable bundles on $$X^{(n)}$$ X ( n ) where the dimension of the tangent space jumps. We also prove that $$E^{[n]}$$ E [ n ] is simple if E is simple.

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Algebra and Number Theory

Reference38 articles.

1. Ancona, V., Ottaviani, G.: Stability of special instanton bundles on $${ P}^{2n+1}$$. Trans. Am. Math. Soc. 341(2), 677–693 (1994)

2. Aprodu, M., Nagel, J.: Koszul cohomology and algebraic geometry. University Lecture Series, vol. 52. American Mathematical Society, Providence (2010)

3. Arbarello E., Cornalba M., Griffiths P.A., Harris J.: Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267 [Fundamental Principles of Mathematical Sciences]. Springer, New York (1985)

4. Basu, S., Dan, K.: Stability of secant bundles on the second symmetric power of curves. Arch. Math. (Basel) 110(3), 245–249 (2018)

5. Biswas, I., Nagaraj, D.S.: Stability of secant bundles on second symmetric power of a curve. In Commutative algebra and algebraic geometry (CAAG-2010), Ramanujan Math. Soc. Lect. Notes Ser., vol. 17, pp. 13–18. Ramanujan Math. Soc., Mysore (2013)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extension groups of tautological bundles on punctual Quot schemes of curves;Journal de Mathématiques Pures et Appliquées;2024-09

2. Descent of tautological sheaves from Hilbert schemes to Enriques manifolds;Annali di Matematica Pura ed Applicata (1923 -);2024-03-15

3. Euler characteristics of tautological bundles over Quot schemes of curves;Advances in Mathematics;2023-04

4. Extension groups of tautological bundles on symmetric products of curves;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2022-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3