Automated local Fourier analysis (aLFA)

Author:

Kahl Karsten,Kintscher NilsORCID

Abstract

AbstractLocal Fourier analysis is a commonly used tool to assess the quality and aid in the construction of geometric multigrid methods for translationally invariant operators. In this paper we automate the process of local Fourier analysis and present a framework that can be applied to arbitrary, including non-orthogonal, repetitive structures. To this end we introduce the notion of crystal structures and a suitable definition of corresponding wave functions, which allow for a natural representation of almost all translationally invariant operators that are encountered in applications, e.g., discretizations of systems of PDEs, tight-binding Hamiltonians of crystalline structures, colored domain decomposition approaches and last but not least two- or multigrid hierarchies. Based on this definition we are able to automate the process of local Fourier analysis both with respect to spatial manipulations of operators as well as the Fourier analysis back-end. This automation most notably simplifies the user input by removing the necessity for compatible representations of the involved operators. Each individual operator and its corresponding structure can be provided in any representation chosen by the user.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Fourier Analysis of p-Multigrid for High-Order Finite Element Operators;SIAM Journal on Scientific Computing;2023-06-26

2. Low‐order preconditioning of the Stokes equations;Numerical Linear Algebra with Applications;2021-12-03

3. EvoStencils: a grammar-based genetic programming approach for constructing efficient geometric multigrid methods;Genetic Programming and Evolvable Machines;2021-09-03

4. Independence of placement for local Fourier analysis;Numerical Linear Algebra with Applications;2021-05-04

5. A Generalized and Unified Framework of Local Fourier Analysis Using Matrix-Stencils;SIAM Journal on Matrix Analysis and Applications;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3