EvoStencils: a grammar-based genetic programming approach for constructing efficient geometric multigrid methods

Author:

Schmitt JonasORCID,Kuckuk Sebastian,Köstler Harald

Abstract

AbstractFor many systems of linear equations that arise from the discretization of partial differential equations, the construction of an efficient multigrid solver is challenging. Here we present EvoStencils, a novel approach for optimizing geometric multigrid methods with grammar-guided genetic programming, a stochastic program optimization technique inspired by the principle of natural evolution. A multigrid solver is represented as a tree of mathematical expressions that we generate based on a formal grammar. The quality of each solver is evaluated in terms of convergence and compute performance by automatically generating an optimized implementation using code generation that is then executed on the target platform to measure all relevant performance metrics. Based on this, a multi-objective optimization is performed using a non-dominated sorting-based selection. To evaluate a large number of solvers in parallel, they are distributed to multiple compute nodes. We demonstrate the effectiveness of our implementation by constructing geometric multigrid solvers that are able to outperform hand-crafted methods for Poisson’s equation and a linear elastic boundary value problem with up to 16 million unknowns on multi-core processors with Ivy Bridge and Broadwell microarchitecture.

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolving Nonlinear Multigrid Methods With Grammar-Guided Genetic Programming;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

2. Evolving generalizable multigrid-based helmholtz preconditioners with grammar-guided genetic programming;Proceedings of the Genetic and Evolutionary Computation Conference;2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3