Abstract
AbstractIn this paper we consider the problem of the approximation of definite integrals on finite intervals for integrand functions showing some kind of “pathological” behavior, e.g. “nearly” singular functions, highly oscillating functions, weakly singular functions, etc. In particular, we introduce and study a product rule based on equally spaced nodes and on the constrained mock-Chebyshev least squares operator. Like other polynomial or rational approximation methods, this operator was recently introduced in order to defeat the Runge phenomenon that occurs when using polynomial interpolation on large sets of equally spaced points. Unlike methods based on piecewise approximation functions, mainly used in the case of equally spaced nodes, our product rule offers a high efficiency, with performances slightly lower than those of global methods based on orthogonal polynomials in the same spaces of functions. We study the convergence of the product rule and provide error estimates in subspaces of continuous functions. We test the effectiveness of the formula by means of several examples, which confirm the theoretical estimates.
Funder
Università della Calabria
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献