Affiliation:
1. Ministry of Education Key Laboratory for NSLSCS, School of Mathematical Sciences Nanjing Normal University Nanjing China
2. School of Mathematics Hohai University Nanjing China
Abstract
In numerical analysis, the quadrature formulas serve as a pivotal tool for approximating definite integrals. In this paper, we introduce a family of quadrature formulas and analyze their associated error bounds for convex functions. The main advantage of these new error bounds is that from these error bounds, we can find the error bounds of different quadrature formulas. This work extends the traditional quadrature formulas such as the midpoint formula, trapezoidal formula, Simpson's formula, and Boole's formula. We also use the power mean and Hölder's integral inequalities to find more general and sharp bounds. Furthermore, we give numerical example and applications to quadrature formulas of the newly established inequalities.
Funder
National Natural Science Foundation of China