Towards a Polynomial Kernel for Directed Feedback Vertex Set
-
Published:2020-11-04
Issue:5
Volume:83
Page:1201-1221
-
ISSN:0178-4617
-
Container-title:Algorithmica
-
language:en
-
Short-container-title:Algorithmica
Author:
Bergougnoux Benjamin, Eiben Eduard, Ganian Robert, Ordyniak SebastianORCID, Ramanujan M. S.
Abstract
AbstractIn the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph D and an integer k. The objective is to determine whether there exists a set of at most k vertices intersecting every directed cycle of D. DFVS was shown to be fixed-parameter tractable when parameterized by solution size by Chen et al. (J ACM 55(5):177–186, 2008); since then, the existence of a polynomial kernel for this problem has become one of the largest open problems in the area of parameterized algorithmics. Since this problem has remained open in spite of the best efforts of a number of prominent researchers and pioneers in the field, a natural step forward is to study the kernelization complexity of DFVS parameterized by a natural larger parameter. In this paper, we study DFVS parameterized by the feedback vertex set number of the underlying undirected graph. We provide two main contributions: a polynomial kernel for this problem on general instances, and a linear kernel for the case where the input digraph is embeddable on a surface of bounded genus.
Funder
Österreichische Forschungsförderungsgesellschaft
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,General Computer Science
Reference39 articles.
1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999) 2. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998) 3. Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-like approximation algorithms for the vertex feedback set problem. Artif. Intell. 83(1), 167–188 (1996) 4. Bergougnoux, B., Eiben, E., Ganian, R., Ordyniak, S., Ramanujan, M.S.: Towards a polynomial kernel for directed feedback vertex set. In: 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21–25, 2017—Aalborg, Denmark, pp. 36:1–36:15 (2017) 5. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. J. ACM 63(5), 44:1–44:69 (2016)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|