(Meta) Kernelization

Author:

Bodlaender Hans L.1,Fomin Fedor V.2,Lokshtanov Daniel2,Penninkx Eelko3,Saurabh Saket4,Thilikos Dimitrios M.5

Affiliation:

1. Utrecht University and Eindhoven University of Technology, TB Utrecht, Netherlands

2. University of Bergen, Bergen, Norway

3. Utrecht University, TB Utrecht, Netherlands

4. Institute of Mathematical Sciences and University of Bergen, Chennai, India

5. National 8 Kapodistrian University of Athens and AlGCo Project Team, CNRS, LIRMM, Athens, Greece

Abstract

In a parameterized problem, every instance I comes with a positive integer k . The problem is said to admit a polynomial kernel if, in polynomial time, one can reduce the size of the instance I to a polynomial in k while preserving the answer. In this work, we give two meta-theorems on kernelization. The first theorem says that all problems expressible in counting monadic second-order logic and satisfying a coverability property admit a polynomial kernel on graphs of bounded genus. Our second result is that all problems that have finite integer index and satisfy a weaker coverability property admit a linear kernel on graphs of bounded genus. These theorems unify and extend all previously known kernelization results for planar graph problems.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preprocessing to reduce the search space: Antler structures for feedback vertex set;Journal of Computer and System Sciences;2024-09

2. Search-Space Reduction via Essential Vertices;SIAM Journal on Discrete Mathematics;2024-08-30

3. Treelength of series–parallel graphs;Discrete Applied Mathematics;2023-12

4. Dynamic treewidth;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

5. Hitting Minors on Bounded Treewidth Graphs. IV. An Optimal Algorithm;SIAM Journal on Computing;2023-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3