Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs

Author:

Fomin Fedor V.,Golovach Petr A.ORCID

Abstract

AbstractWe study algorithmic properties of the graph class $${\textsc {Chordal}}{-ke}$$ C H O R D A L - k e , that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. It appears that a number of fundamental intractable optimization problems being parameterized by k admit subexponential algorithms on graphs from $${\textsc {Chordal}}{-ke}$$ C H O R D A L - k e . More precisely, we identify a large class of optimization problems on $${\textsc {Chordal}}{-ke}$$ C H O R D A L - k e solvable in time $$2^{{\mathcal{O}}(\sqrt{k}\log k)}\cdot n^{{\mathcal{O}}(1)}$$ 2 O ( k log k ) · n O ( 1 ) . Examples of the problems from this class are finding an independent set of maximum weight, finding a feedback vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum induced planar subgraph. On the other hand, we show that for some fundamental optimization problems, like finding an optimal graph coloring or finding a maximum clique, are FPT on $${\textsc {Chordal}}{-ke}$$ C H O R D A L - k e when parameterized by k but do not admit subexponential in k algorithms unless ETH fails. Besides subexponential time algorithms, the class of $${\textsc {Chordal}}{-ke}$$ C H O R D A L - k e graphs appears to be appealing from the perspective of kernelization (with parameter k). While it is possible to show that most of the weighted variants of optimization problems do not admit polynomial in k kernels on $${\textsc {Chordal}}{-ke}$$ C H O R D A L - k e graphs, this does not exclude the existence of Turing kernelization and kernelization for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique on $${\textsc {Chordal}}{-ke}$$ C H O R D A L - k e graphs. For (unweighted) Independent Set we design polynomial kernels on two interesting subclasses of $${\textsc {Chordal}}{-ke}$$ C H O R D A L - k e , namely, $${\textsc {Interval}}{-ke}$$ I N T E R V A L - k e and $${\textsc {Split}}{-ke}$$ S P L I T - k e graphs.

Funder

Norges Forskningsråd

University of Bergen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3