Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion

Author:

Agrawal Akanksha1,Lokshtanov Daniel2,Misra Pranabendu2,Saurabh Saket3,Zehavi Meirav4

Affiliation:

1. Hungarian Academy of Sciences, Budapest, Hungary

2. University of Bergen, Bergen, Norway

3. Institute of Mathematical Sciences, India and University of Bergen, Norway

4. Ben-Gurion University, Beersheba, Israel

Abstract

Given a graph G and a parameter k , the C hordal V ertex D eletion (CVD) problem asks whether there exists a subset UV ( G ) of size at most k that hits all induced cycles of size at least 4. The existence of a polynomial kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O ( k 161 log 58 k ) and asked whether one can design a kernel of size O ( k 10 ) [Jansen an Pilipczuk, SODA 2017]. While we do not completely resolve this question, we design a significantly smaller kernel of size O ( k 12 log 10 k ), inspired by the O ( k 2 ) -size kernel for F eedback V ertex S et [Thomassé, TALG 2010]. Furthermore, we introduce the notion of the independence degree of a vertex, which is our main conceptual contribution.

Funder

European Research Council under the European Unions Seventh Framework Programme ERC

ERC Starting

Pareto-Optimal Parameterized Algorithms

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximating Small Sparse Cuts;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. A Polynomial Kernel for 3-Leaf Power Deletion;Algorithmica;2023-05-09

3. A survey of parameterized algorithms and the complexity of edge modification;Computer Science Review;2023-05

4. Polynomial Kernel for Interval Vertex Deletion;ACM Transactions on Algorithms;2023-04-15

5. Expansion Lemma—Variations and Applications to Polynomial-Time Preprocessing;Algorithms;2023-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3