Clique-Based Separators for Geometric Intersection Graphs

Author:

de Berg Mark,Kisfaludi-Bak Sándor,Monemizadeh Morteza,Theocharous LeonidasORCID

Abstract

AbstractLet F be a set of n objects in the plane and let $$\mathcal {G}^{\times }(F)$$ G × ( F ) be its intersection graph. A balanced clique-based separator of $$\mathcal {G}^{\times }(F)$$ G × ( F ) is a set $$\mathcal {\mathcal {S}}$$ S consisting of cliques whose removal partitions $$\mathcal {G}^{\times }(F)$$ G × ( F ) into components of size at most $$\delta n$$ δ n , for some fixed constant $$\delta <1$$ δ < 1 . The weight of a clique-based separator is defined as $$\sum _{C\in \mathcal {\mathcal {S}}}\log (|C|+1)$$ C S log ( | C | + 1 ) . Recently De Berg et al. (SIAM J. Comput. 49: 1291-1331. 2020) proved that if S consists of convex fat objects, then $$\mathcal {G}^{\times }(F)$$ G × ( F ) admits a balanced clique-based separator of weight $$O(\sqrt{n})$$ O ( n ) . We extend this result in several directions, obtaining the following results. (i) Map graphs admit a balanced clique-based separator of weight $$O(\sqrt{n})$$ O ( n ) , which is tight in the worst case. (ii) Intersection graphs of pseudo-disks admit a balanced clique-based separator of weight $$O(n^{2/3}\log n)$$ O ( n 2 / 3 log n ) . If the pseudo-disks are polygonal and of total complexity O(n) then the weight of the separator improves to $$O(\sqrt{n}\log n)$$ O ( n log n ) . (iii) Intersection graphs of geodesic disks inside a simple polygon admit a balanced clique-based separator of weight $$O(n^{2/3}\log n)$$ O ( n 2 / 3 log n ) . (iv) Visibility-restricted unit-disk graphs in a polygonal domain with r reflex vertices admit a balanced clique-based separator of weight $$O(\sqrt{n}+r\log (n/r))$$ O ( n + r log ( n / r ) ) , which is tight in the worst case. These results immediately imply sub-exponential algorithms for Maximum Independent Set (and, hence, Vertex Cover), for Feedback Vertex Set, and for q-Coloring for constant q in these graph classes.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3