1. Adamaszek, A., Har-Peled, S., Wiese, A.: Approximation schemes for independent set and sparse subsets of polygons. CoRR,
arXiv:1703.04758
(2017)
2. Adamaszek, A., Wiese, A.: A QPTAS for maximum weight independent set of polygons with polylogarithmically many vertices. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, pp. 645–656 (2014)
3. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004)
4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)
5. Biró, C., Bonnet, É., Marx, D., Miltzow, T., Rzążewski, P.: Fine-grained complexity of coloring unit disks and balls. In: 33rd International Symposium on Computational Geometry, SoCG 2017, July 4–7, 2017, Brisbane, Australia, pp. 18:1–18:16 (2017)